Identification of novel dopamine D₂ receptor ligands – a combined in silico / in vitro approach

Lukas Zell, Jakub Kollár, Constanze Lainer, Veronika Temml, Daniela Schuster

Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Salzburg, Austria Contact: lukas.zell@pmu.ac.at

Objective The dopamine receptor D_2 (D_2R) has been shown to be involved in CNS diseases. While different D_2R -targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. In dire need of novel D_2R ligands for drug development, combined in silico / in vitro approaches have been shown to be efficient strategies discovering potential drug candidates. **Conclusion** With the combined approach using in silico pharmacophore modelling (both ligand (LB)- and structure-based (SB) approaches), in silico virtual screening (VS) and in vitro methods we were able to identify six novel D_2R ligands with low micro- to nanomolar activities. The developed workflow and successfully identified ligands could aid in developing novel therapeutics for D_2R -associated pathologies.

Figure 2. In Vitro overview of the identified D_2R ligands. (a) Exemplary comparison of K_1 values of dopamine (endogenous ligand) and (b) (highest activity of identified ligands). (b) Overview of the K_1 of novel D_2R ligands determined in vitro. Fold-differences were calculated based on dopamine activity. K_1 values were calculated with n = 6. (c) 2D structures of the identified, novel D_2R ligands.

Acknowledgements L. Z. is funded by the FFG project 872425.

